Quantcast

Ciencia

El Hubble capta la muerte de una estrella en el universo primitivo

El telescopio espacial Hubble ha fotografiado las primeras fases de una supernova que tuvo lugar cuando el universo apenas tenía 2.100 millones de años.

Impresión artística de la supernova 1993J en la galaxia M81.
Impresión artística de la supernova 1993J en la galaxia M81. NASA, ESA y G. Bacon

El telescopio espacial Hubble ha captado las primeras fases de una supernova. La instantánea, que recoge tres momentos diferentes a las pocas horas de la explosión estelar, corresponde a una estrella que tenía un tamaño 500 veces mayor que el Sol y que explosionó hace 11.000 millones de años, cuando el universo era aún primitivo con 2.100 millones de años. Esta imagen, captada por el telescopio espacial Hubble de la ESA y de la NASA, ha sido publicada esta semana por un equipo internacional de investigadores, con participación del Consejo Superior de Investigaciones Científicas (CSIC), en la revista Nature.  

Se trata de la primera vez que se observa con tanta precisión una supernova en sus primeras etapas a esta distancia y que, además, corresponde a una explosión estelar al comienzo de la historia del universo. Ambos hallazgos podrían ayudar a la comunidad científica a saber más sobre la formación de estrellas y galaxias en el universo primitivo. 

Los investigadores encontraron esta supernova examinando los archivos de datos del Hubble en busca de eventos transitorios. El equipo también tiene tiempo planeado para que el Telescopio Espacial James Webb de la NASA/ESA/CSA observe supernovas aún más distantes. Esperan contribuir a un catálogo de supernovas muy lejanas para ayudar a los astrónomos a comprender si las estrellas que existieron hace muchos miles de millones de años son diferentes de las del Universo cercano

"Es bastante raro que se pueda detectar una supernova en una etapa muy temprana, porque esa etapa es muy corta", explica Wenlei Chen, primer firmante del trabajo e investigador en la Escuela de Física y Astronomía de la Universidad de Minnesota. "Sólo dura de unas horas a unos días, y puede pasar desapercibido fácilmente incluso para una detección temprana. En la misma exposición, hemos sido capaces de ver una secuencia de imágenes, como las múltiples etapas de una supernova”, añade.

La exposición del Hubble capturó el rápido cambio de color de la supernova que se desvanece, lo que indica su cambio de temperatura. Cuanto más azul es el color, más caliente es la supernova. La primera fase capturada aparece azul. A medida que la supernova se enfriaba, su luz se volvía más roja.

Esta es también la primera vez que los astrónomos han podido medir el tamaño de una estrella moribunda en el Universo primitivo. Lo hicieron observando el brillo de la supernova y la velocidad de enfriamiento, los cuales dependen del tamaño de la estrella progenitora. Las observaciones del Hubble muestran que la supergigante roja cuya explosión de supernova descubrieron los investigadores tenía un radio unas 500 veces mayor que el Sol.

Las tres fases de la explosión de la supernova tras el cúmulo de galaxias ‘Abell 370’. |STScI

Una sola imagen el Hubble

El telescopio Hubble ha captado en una sola imagen tres momentos únicos de la explosión de la supernova a lo largo de diferentes fases, que llegaron a la Tierra al mismo tiempo. Esta imagen se ha conseguido gracias al fenómeno llamado lente gravitacional: este efecto se produce por un cúmulo de galaxias, con una masa miles de veces la masa de nuestra Galaxia, que amplifica la luz que se produce en objetos que están muy alejados y alineados justo detrás del cúmulo. Funciona como lo haría una lente, aumentando la luz que nos llega de la supernova, haciéndola visible para el telescopio espacial.

De esta forma, el cúmulo de galaxias Abell 370 ha actuado como si fuera la lente, magnificando la luz de la supernova lejana, que se situaba detrás del cúmulo. Las imágenes ampliadas por esta lente han tomado tres rutas diferentes a través del cúmulo, debido a las diferencias de longitud en los caminos que siguió la luz de la supernova, a la ralentización del tiempo y a la curvatura del espacio por la gravedad predicha por Albert Einstein.

“Debido a que la luz tarda tiempos distintos en viajar por estos tres caminos, la imagen captada por el Hubble muestra tres instantes de la explosión en una sola imagen. Entre estos tres instantes, uno de ellos corresponde a solo unas horas después de la explosión”, explica José María Diego, investigador del Instituto de Física de Cantabria (IFCA, CSIC-UC) que ha participado en la interpretación del efecto lente gravitacional y de los tiempos entre las distintas imágenes de la supernova.

Además, el telescopio ha captado los cambios de temperatura de la supernova, que se observan con la variación en su color. Cuando es más azul, más caliente es la supernova, y a medida que se enfría su luz, se vuelve más roja. "Se ven diferentes colores en las tres imágenes", afirma Patrick Kelly, líder del estudio y profesor en la Escuela de Física y Astronomía de la Universidad de Minnesota. “En el núcleo de la estrella masiva se produce un choque, se calienta, y luego ves que se enfría. Es, probablemente, una de las cosas más sorprendentes que he visto nunca”, destaca.

Una estrella gigante

Las observaciones muestran que la estrella roja supergigante poseía un tamaño 500 veces mayor que el del Sol. Se trata de la primera vez que el equipo investigador es capaz de medir las dimensiones de una estrella moribunda en el universo más primitivo. Para lograrlo, se han basado en algoritmos de aprendizaje automático (machine learning) para medir el brillo y la velocidad de enfriamiento del astro.

Ahora, aprovechando la llegada del telescopio espacial James Webb de la NASA, el equipo tiene previsto comenzar a observar supernovas aún más lejanas y crear un catálogo de supernovas que ayuden a entender si las estrellas que existieron hace miles de millones de años son diferentes de las del universo que conocemos hoy.

Referencia: Shock cooling of a red-supergiant supernova at redshift 3 in lensed images (Nature) | Fuentes: CSIC y Hubble

Ya no se pueden votar ni publicar comentarios en este artículo.