Materiales

Los circuitos del futuro serán de vanadio

Las características del dióxido de vanadio pueden convertirlo en el material que revolucione los circuitos. Un material revolucionario para un futuro de ciencia ficción.

Un material revolucionario para un futuro de ciencia ficción
Un material revolucionario para un futuro de ciencia ficción EPFL / Jamani Caillet

Primero vino el interruptor. Luego el transistor. Ahora otra innovación puede revolucionar la forma en que controlamos el flujo de electrones a través de un circuito: el dióxido de vanadio (VO2). Una característica clave de este compuesto es que se comporta como un aislante a temperatura ambiente, pero como un conductor a temperaturas superiores a 68 °C. Este comportamiento, también conocido como transición de aislante de metal, podría ser muy útil para una variedad de aplicaciones nuevas y emocionantes.

La estructura atómica del dióxido de vanadio cambia de fase a medida que aumenta la temperatura

Los científicos conocen desde hace mucho tiempo las propiedades electrónicas del VO2, pero no han podido explicarlas hasta ahora. Resulta que su estructura atómica cambia de fase a medida que aumenta la temperatura, pasando de una estructura cristalina a temperatura ambiente a una metálica, a temperaturas superiores a 68°C.

Lo verdaderamente interesante es que esta transición ocurre en menos de un nanosegundo, algo que lo hace muy útil para aplicaciones electrónicas. No solo eso, además de a la temperatura, resulta que el VO2 también es sensible a otros factores que podrían hacer que cambie de fase, como la inyección de energía eléctrica, determinadas iluminaciones, o la aplicación de un pulso de radiación de terahercios (en el límite entre microondas e infrarrojo). Todo ello implica que el consumo energético del interruptor es minúsculo.

Contrariamente a lo que podamos suponer, 68ºC es una temperatura de transición demasiado baja para la electrónica de los dispositivos actuales, donde los circuitos funcionan sin problemas a unos 100 ºC. Una solución a este problema la propusieron investigadores de la Escuela Politécnica Federal de Lausana (Suiza) en julio de 2017 que consistía en añadir germanio a una lamina de VO2. Simplemente con esto la transición pasaba a ocurrir a 100 ºC.

El equipo de Montserrat Fernández-Bolaños ha fabricado por primera vez filtros de frecuencia modulables ultracompactos

Solucionado este problema, investigadores del mismo grupo suizo, que incluye a la ingeniera española Montserrat Fernández-Bolaños, han sido capaces de fabricar por primera vez filtros de frecuencia modulables ultracompactos. Esta tecnología hace uso de las características de interruptor por cambio de fase del VO2 y es especialmente eficaz en un rango de frecuencias que es crucial para las comunicaciones espaciales, la llamada banda Ka. Esta banda es la que se emplea, por ejemplo, para la descarga de datos científicos del telescopio espacial Kepler y es la que se usará en telescopio espacial James Webb. Los filtros pueden programarse para modular entre los 28,2 y los 35 GHz.

Estos primeros resultados es muy posible que estimulen la investigación de las aplicaciones del VO2 en dispositivos electrónicos de potencia ultrabaja. Además de las comunicaciones espaciales que mencionábamos, otras posibilidades podrían ser la computación neuromórfica (computación basada en circuitos analógicos que simulan estructuras neurobiológicas) y los radares de alta frecuencia para automóviles autónomos.

Referencia: E. A. Casu , A. A. Müller, M. Fernández-Bolaños et al (2018) Vanadium Oxide bandstop tunable filter for Ka frequency bands based on a novel reconfigurable spiral shape defected ground plane CPW IEEE Access doi: 10.1109/ACCESS.2018.2795463



Comentar | Comentarios 0

Tienes que estar registrado para poder escribir comentarios.

Puedes registrarte gratis aquí.

  • Comentarios…

Más comentarios

  • Mejores comentarios…
Volver arriba