Quantcast

Ciencia

El termómetro cuántico más pequeño posible

Mapa de temperaturas de una célula tomado con un termómetro de nanodiamante

La respuesta la da un grupo de investigadores encabezado por Luis Alberto Correa, de la Universidad Autónoma de Barcelona, en un artículo publicado en Physical Review Letters. El termómetro a nanoescala más pequeño y todavía preciso sería un sistema cuántico con dos niveles de energía, el fundamental y otro excitado pero multidegenerado.

Hasta ahora se ha conseguido medir la temperatura de los electrones en un semiconductor.

En los últimos dos años distintos grupos de investigación han desarrollado termómetros cuánticos que pueden pedir variaciones de temperatura de milésimas de kelvin en regiones nanométricas. Estos termómetros se han construido en base a puntos cuánticos o impurezas en nanocristales de diamante. De esta manera se han conseguido medir, por ejemplo, la temperatura de los electrones en un semiconductor y las variaciones térmicas dentro de una célula viva. En la mayoría de los casos la técnica implica dejar primero que el termómetro se equilibre con la temperatura de la muestra (posiblemente alterándola) y midiendo entonces su espectro o detectando una fluorescencia que depende de la temperatura.

Este trabajo experimental ha puesto de manifiesto la necesidad de responder a la pregunta de cuál es la precisión real de estos termómetros y qué tipo de objeto sería el termómetro ideal en la nanoescala. Correa y colaboradores lo que han hecho para responder a estas cuestiones es emplear una combinación de herramientas matemáticas que se usan en mecánica cuántica y en termodinámica.

En última instancia lo que se termina midiendo cuando se mide la temperatura está muy relacionado con el nivel de energía del termómetro. Los investigadores demuestran que el termómetro nanométrico más sensible será aquel que tenga la mayor capacidad calorífica, es decir, aquel para el que pequeños cambios en la temperatura ambiente supongan grandes cambios en su energía.

El trabajo recupera la cuestión de cuál es la precisión real de estos termómetros.

Si se tiene una expresión matemática para la capacidad calorífica, basta con encontrar sus máximos (otra expresión matemática) para hallar la máxima sensibilidad posible de un termómetro cuántico. Esta sensibilidad resulta que depende de la configuración de niveles de energía del termómetro y el número de estados cuánticos disponibles: a mayor número de estados excitados degenerados, es decir, con igual energía, mayor la sensibilidad y más estrecho el rango de temperaturas en el que el termómetro opera de forma eficiente. 

Por tanto un experimentador podría empezar con un termómetro de baja precisión pero con un amplio rango de temperaturas para determinar de forma grosera la temperatura de la muestra. Después podría usar termómetros cada vez más precisos en diferentes localizaciones de un circuito o de una célula para crear un mapa pormenorizado de las variaciones locales de temperatura.

Este trabajo será útil a los científicos experimentales para saber cómo mejorar sus experimentos. Una mayor precisión en la determinación de la temperatura es importante en el estudio de la disipación de energía en la nanoescala y en el de los procesos térmicos dentro de las células. 

Referencia: Luis A. Correa, Mohammad Mehboudi, Gerardo Adesso & Anna Sanpera (2015) Individual Quantum Probes for Optimal Thermometry Phys. Rev. Lett. DOI: 10.1103/PhysRevLett.114.220405 

Imagen: Mapa de temperaturas de una célula tomado con un termómetro de nanodiamante (círculo). Fuente: G. Kucsko et al (2013) “Nanometre-scale thermometry in a living cell,” Nature 500, 54

* Este artículo es parte de ‘Proxima’, una colaboración semanal de la Cátedra de Cultura Científica de la UPV con Next. Para saber más, no dejes de visitar el Cuaderno de Cultura Científica.

Ya no se pueden votar ni publicar comentarios en este artículo.